

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
A	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
E	mark is for explanation			
$\sqrt{\text{or ft or F}}$	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	or equivalent	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
–x EE	deduct x marks for each error	G	graph	
NMS	no method shown	c	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

Q	Solution	Marks	Total	Comments
1(a)				
(i)	f(-1) = 0	B1	1	
(ii)	$f\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{8}\right) - 7\left(-\frac{1}{2}\right) - 3$	M1		Use of $\pm \frac{1}{2}$
	$=-\frac{1}{2}+\frac{7}{2}-3=0 \Longrightarrow factor$	A1	2	Need to see simplification (at least
				$\left(-\frac{1}{2}\right)^3 = -\frac{1}{8}$, '=0' and conclusion
(iii)	Third factor is $(2x-3)$	B1		PI
	(x+1)(2x+1)(2x-3)	M1		3 linear factors
	$\frac{(x+1)(2x+1)(2x-3)}{(x+1)(2x+1)}$	1V1 1		2 linear factors
	simplifies to $2x-3$	A1		Simplified result stated.
				Alternative; see end.
				Use remainder theorem.
	Alternative			
	Complete division to $2x + b$	(M1)		
	Complete division to $2x-3$	(A1)		
	Simplifies to $2x-3$	(A1)	3	Simplified result stated
(b)	$g\left(-\frac{1}{2}\right) = -\frac{1}{2} + \frac{7}{2} + d = 2$	M1		
	d = -1	A1		
	Alternative			
	Complete division leading to rem $= 2$	(M1)		Remainder = $d + p = 2$
	d = -1	(A1)	2	
	Total		8	
2(a)	$R = \sqrt{10}$	B1		Accept $R = 3.16$ or better.
	$\tan \alpha = 3$	M1		OE (Can be implied by 71.57° seen)
	$\alpha = 1.25$	A1	3	A0 if extra answers within given range
				SC 1 $\tan \alpha = \frac{1}{3}$ $\alpha = 0.32$
(b)(i)	min value = $-\sqrt{10}$ (or $\geq \sqrt{-10}$)	B1F	1	ft on R
(ii)	$\sin(x-\alpha) = -1$	M1		or $\sin^{-1}\frac{3\pi}{2}$
	x = 5.96	A1F	2	ft on their α (to 2 dp) $+\frac{3\pi}{2}$
	Total		6	

MPC4 (cont				
Q	Solution	Marks	Total	Comments
3(a)				
(i)	$\frac{2x+7}{x+2} = 2 + \frac{3}{x+2}$	B1	2	
		B1	2	
(ii)	$\int \frac{2x+7}{x+2} = 3\ln(x+2) + 2x + C$	B1F		Either term correct
	x+2	B1F	2	Both correct; constant required; condone
				missing bracket
(b)(i)	20 . 4 2			ft on A , B
(b)(i)	$28 + 4x^2 =$			
	$P(5-x)^2+Q(1+3x)(5-x)$	M1		
	+R(1+3x)			
	$x = 5$ $x = -\frac{1}{3}$	m1		Two values of x used to find R and P .
	R=8 $P=1$	A1		SC R = 8, P = 1 NMS can score B1,B1
	$x = 0 \Rightarrow 28 = 25P + 5Q + R$	m1		Third value of x used to find Q
	Q = -1	A1		
	Alternative			
	$28 + 4x^2 =$			
	$P(5-x)^2+Q(1-3x)(5-x)$	(M1)		
	+R(1+3x)	(M1)		
	=(25P+5Q+R)+			
	$(-10P+14Q+3R)x+(P-3Q)x^2$	(m1)		Collect terms and form equations
	, , , ,			
	P - 3Q = 4 14Q + 3R - 10P = 0	(A1)		Correct equations
	14Q + 3R - 10I = 0 $25P + 5Q + R = 28$	(111)		Correct equations
	P = 1 $Q = -1$ $R = 8$	(m1)		Solve for PQ and R
		(A1)	5	~
(ii)	$\int \frac{1}{x} - \frac{1}{x} + \frac{8}{x} dx$	M1		Use partial fractions
	$\int \frac{1}{1+3x} - \frac{1}{5-x} + \frac{8}{(5-x)^2} dx$			
	$= \frac{1}{3} \ln(1+3x) + \ln(5-x) + \frac{8}{5-x} + (C)$	m1		$a\ln(1+3x)+b\ln(5-x)$
	$3^{m(1+\delta x)+m(\delta-x)+5-x}$	A1F		OE; both ln integrals correct; needs ()
		A1F	4	Other term correct
				ft on their P, Q, R
				SC: If no <i>P</i> , <i>Q</i> , <i>R</i> found in (b)(i), can gain
				method marks by inserting other values or
				retaining the letters (max 2/4)
				. ,
	Total		13	

Q Q	Solution	Marks	Total	Comments
4(a)	$(1-x)^{\frac{1}{2}} = 1 + \frac{1}{2}(-x) + px^2$	M1		
(i)	$=1-\frac{1}{2}x-\frac{1}{8}x^2$	A1	2	
	2 8 8 8	AI	2	
(ii)	$\sqrt{4-x} = 2\left(1-\frac{x}{4}\right)^{\frac{1}{2}}$	B1		or $(4)^{\frac{1}{2}}(1-\frac{x}{4})^{\frac{1}{2}}$
	. ,	D 1		
	$= \left(2\right) \left(1 - \frac{1}{2}\left(\frac{x}{4}\right) - \frac{1}{8}\left(\frac{x}{4}\right)^2\right)$	M1		x replaced by $\frac{x}{4}$; condone missing ()
				Or start again with $\left(1-\frac{x}{4}\right)^{\frac{1}{2}}$
	$=2-\frac{x}{4}-\frac{x^2}{64}$	A1		CAO or decimal equivalent
	Alternative			or so or document of the control of
	$(4-x)^{\frac{1}{2}} = 4^{\frac{1}{2}} + \frac{1}{2} \times 4^{-\frac{1}{2}} (-x)$	(M1)		Use of $(a+x)^n$ from formula book
	$+\frac{\frac{1}{2}(-\frac{1}{2})}{2}4^{-\frac{3}{2}}(-x)^2$			Condone missing brackets and 1 error
	$+\frac{2(-x)^{2}}{2}4^{-2}(-x)$	(A1)		
	$=2-\frac{x}{4}-\frac{x^2}{64}$	(A1)	3	
(b)	$x=1$ $\sqrt{3} \approx 2 - \frac{1}{4} - \frac{1}{64}$	M1		x = 1 used in their expansion
	=1.734 (3dp)	A1	2	CSO
	Total		7	
5(a)	$\sin 2x = 2\sin x \cos x$	B1	1	OE, eg $\sin x \cos x + \sin x \cos x$ etc
	$\cos x = 0 \qquad x = 90, 270$	B1		Both required
(b)	$10\sin x + 3 = 0$	M1	4	CAO
	x = 197.5 342.5	A1A1	4	CAO if extra values in given range, max 1/2
(c)	$\cos 2x = \cos^2 x - \sin^2 x$	B1		$\cos 2x$ in any correct form
	$2\sin x \cos x + 1 - 2\sin^2 x = 1 + \sin x$	M1		$\sin 2x$ expanded and $\cos 2x$ in terms of
	25111110053111 2511131 31 11 51113			$\sin x$ used
		A1		
	$2\sin x(\cos x - \sin x) = \sin x$			
	$2(\cos x - \sin x) = 1$	A1	4	CSO; need to see $\sin x$ taken out as factor
	T-4-1		0	or cancelled
	Total		9	

QSolutionMarksTotalComments6 (a) $x^2 \frac{dy}{dx} + 2xy$ M1 A1Product rule used. Allow 1 error and the second of the s	ourious
B1 RHS and equation with no specific depth of the second	
(b)	
$\frac{dy}{dx} = -\frac{2}{7}$ A1 6 CSO $\frac{dy}{dx} = 0 \Rightarrow$ M1 Derivative = 0 used $xy = 1$ A1 OE $x^2 \times \frac{1}{x} + \frac{1}{x^3} = 2x + 1$ M1 Use $xy = k$ to eliminate y on A1 $\frac{1}{x^3} = x + 1$ A1 A1 Answer given; CSO	n LHS
(b) $\frac{dy}{dx} = 0 \Rightarrow \qquad M1 \qquad Derivative = 0 \text{ used}$ $xy = 1 \qquad A1 \qquad OE$ $x^2 \times \frac{1}{x} + \frac{1}{x^3} = 2x + 1 \qquad m1 \qquad Use xy = k \text{ to eliminate } y \text{ on}$ $\frac{1}{x^3} = x + 1 \qquad A1 \qquad 4 \qquad Answer given; CSO$	ı LHS
$\frac{1}{dx} = 0 \Rightarrow xy = 1$ $x^2 \times \frac{1}{x} + \frac{1}{x^3} = 2x + 1$ $\frac{1}{x^3} = x + 1$ A1 A1 OE Use $xy = k$ to eliminate y on A1 Answer given; CSO	ı LHS
$xy = 1$ $x^{2} \times \frac{1}{x} + \frac{1}{x^{3}} = 2x + 1$ $\frac{1}{x^{3}} = x + 1$ A1 OE Use $xy = k$ to eliminate y on A1 Answer given; CSO	n LHS
$\frac{1}{x^3} = x + 1$ A1 4 Answer given; CSO	n LHS
X	
Total 10	
	ntegral signs
$-2e^{-\frac{1}{2}x} = -k\frac{t^2}{2} (+C)$ B1B1 3	
(ii) $-2e^{-\frac{1}{2}x} = -k\frac{t^2}{2} - 2e^{-3}$	
$\ln\left(e^{-\frac{1}{2}x}\right) = \ln\left(k\frac{t^2}{4} + e^{-3}\right)$ M1 Take logarithms correctly; considering side negative. Must have a considering side negative.	
$-\frac{1}{2}x = \ln\left(k\frac{t^2}{4} + e^{-3}\right)$	
$x = -2\ln\left(\frac{kt^2}{4} + e^{-3}\right)$ A1 3 Answer given; CSO	
(b) $t = 10$ $x = -2 \ln \left(\frac{0.004 \times 10^2}{4} + e^{-3} \right)$ M1	
$= 3.8 \Rightarrow 3800$ A1 2 CAO	
(ii) $x = 0$ $\frac{0.004 \times t^2}{4} + e^{-3} = 1$ M1	
t = 30.8 A1 2 CAO Treat 0.04 or 0.0004 as misre	and (_1)
Total 10	au (−1)

Q Q	Solution	Marks	Total	Comments
8(a)		M1		$\pm \left(\overrightarrow{OA} - \overrightarrow{OB} \right)$
(i)	$\overrightarrow{AB} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$	A1	2	A0 if answer as coordinates
(ii)	$\overrightarrow{OB} \bullet \overrightarrow{AB} = 3 \times 1 + 1 \times 0 + (-2) \times (-1) = 5$	M1 A1		Evaluate to single value
	$\cos \theta = \frac{\overrightarrow{OB} \bullet \overrightarrow{AB}}{\left \overrightarrow{OB} \mid \times \left \overrightarrow{AB} \mid \right }$ $\left \overrightarrow{OB} \mid = \sqrt{14} \left \overrightarrow{AB} \mid = \sqrt{2} \right $	M1		Use formula for $\cos \theta$ with any 2 vectors and at least one of the corresponding modulii 'correct'
	$\cos\theta = \frac{5}{\sqrt{7 \times 2}\sqrt{2}} = \frac{5}{2\sqrt{7}}$	A1		CSO; AG so need to see intermediate step eg $\frac{5}{\sqrt{7 \times 2}\sqrt{2}}$ or $\frac{5}{\sqrt{28}}$
	Alternative cos rule attempted with cos B cos rule correct with cos B derive correct given form	(M1) (A1) (A2)	4	
(b)	$\mathbf{r} = \begin{bmatrix} 6 \\ 2 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$	M1		$\overrightarrow{OC} + \lambda \overrightarrow{AB}$. Allow one slip
		A1F	2	ft on \overrightarrow{AB} ; needs \mathbf{r} or $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$
(c)	$\overrightarrow{OD} \bullet \overrightarrow{AB} = \begin{bmatrix} 6+\lambda \\ 2 \\ -4-\lambda \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$	M1		
	$6 + \lambda + 4 + \lambda = 0$	m1		
	$\lambda = -5$	A1F		ft on equation of line
	D is $(1,2,1)$	A1		CAO
	Alternative			
	$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = a - c = 0$	(M1)		Let D be (a,b,c) Scalar product evaluated and equated to 0
	$a = 6 + \lambda$, $b = 2$, $c = -4 - \lambda$ a + c = 2	(m1) (A1)		Use equation of line
	a+c=2 $a=1 b=2 c=1$	(A1)	4	
	Total	(111)	12	
	TOTAL		75	